

Dominion Energy At-a-Glance

Employees: 17,100

State with Operations: 13

Customers: 7 million (8 states)

Market Cap: \$68 billion

Generating Capacity: 30.4 GW

Miles of Electric Lines: 88,700

Miles of Gas Pipeline: 101,700

Dominion Energy's Nuclear Fleet

Surry Power Station Surry, VA

Virgil C. Summer Power Station Jenkinsville, SC

North Anna Power Station Mineral, VA

Millstone Power Station Waterford, CT

Nuclear relicensing

Virginia (cost-of-service investment)

- 20-year license extensions
- Rider-recovery eligible (subject to approval)
- Significant customer & environmental value

	Surry	North Anna		
# of units	2	2		
Owned capacity (MW)	1,676	1,672		
Regulated	\checkmark	\checkmark		
Current license expiration	2032/33	2038/40		
% of VA generation ¹	15%	15%		
% of VA zero-carbon generation ¹	45%	45%		
Estimated avoided CO2/year ²	8 million tons	8 million tons		
Key milestones				
NRC extension application	✓ Q4 2018	✓ Q3 2020		
Estimated NRC approval	1H 2021	1H 2022		
Rider recovery filing	2H 2021	2H 2021		
Estimated rider approval	Mid-2022	Mid-2022		

Dominion Energy

¹ Based on 2019 MWh generation

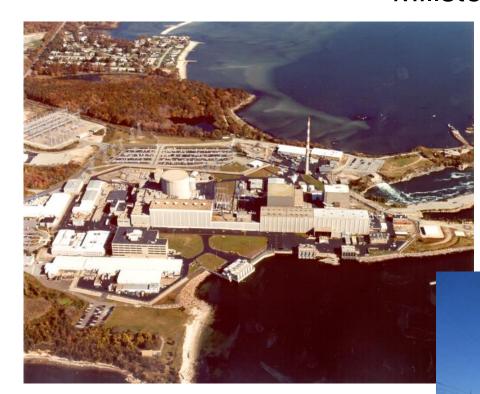
² Illustrative: 3-year average nuclear generation multiplied by the PJM marginal CO2 intensity rate

Independent Spent Fuel Storage Installations

- Designated protected area, with concrete storage pad(s) and dry storage systems
- Licensed by the Nuclear Regulatory Commission under 10CFR Part 72
- Became necessary when the fuel storage pools began to reach capacity and the US Department of Energy breached their obligation to accept used commercial nuclear fuel beginning in 1998
- ISFSIs now present at almost all US commercial nuclear power plants

Dominion Energy Nuclear Sites with Independent Spent Fuel Storage Installations

North Anna



Surry

Millstone

VC Summer

Kewaunee (permanently shut down)

Original Dry Storage Systems

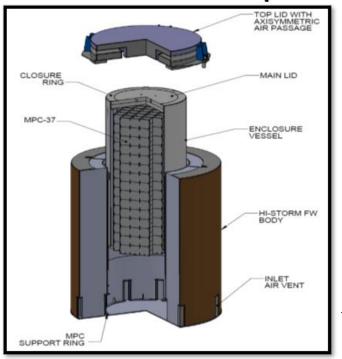
 Vertical metal casks used initially at Surry (1986) and then North Anna (1998)

- System includes the cask and a transporter
- Bolted lids, with full-time lid seal monitoring

 Surry was the first nuclear power plant in the US to construct and operate an ISFSI

Next Generation Dry Storage Systems

- Stainless-Steel canisters stored in concrete bunkers
 - Canisters, concrete modules, transfer cask, and trailer/tugger
 - Lids welded shut with redundant multi-pass welds
 - Canisters stored horizontally in the concrete bunker
- Millstone ISFSI began operation using Transnuclear's NUHOMS* system in 2005
- North Anna and Surry transitioned to NUHOMS in 2007
- Kewaunee ISFSI opened in 2009 with NUHOMS


Next Generation Dry Storage Systems

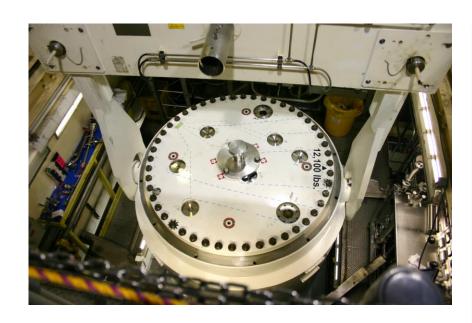
- VC Summer ISFSI operations began in 2016
 - Holtec HI-STORM FW system used
 - Same concept as NUHOMS (welded stainless-steel canister in a concrete overpack), only vertical

Canister

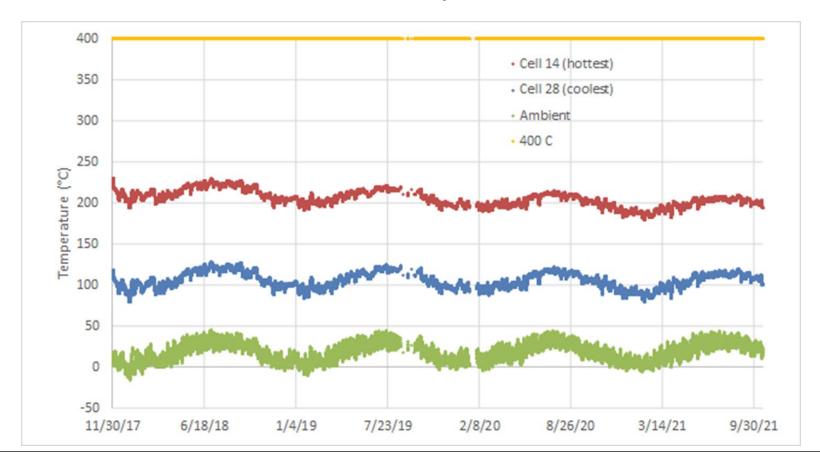
HI-STORM FW Overpack

Dominion Energy Independent Spent Fuel Storage Installations

	1	North An	th Anna Surry					Millstone		Kewaunee		VC Summer
Cask Vendor	Transnuclear (Orano)			GNSI Westinghouse NAC Transnuclear		Transnuclear		Transnuclear NAC		Holtec		
Cask Type	TN-32	NUHOMS 32PTH	NUHOMS EOS	Castor, MC10, I-28	TN-32	NUHOMS 32PTH	NUHOMS EOS	NUHOMS 32PT	NUHOMS EOS	NUHOMS 32PT	MAGNASTOR	MPC-37
Initial Load Date	1998	2008	2021	1986	1998	2007	2022	2005	2027	2009	2017	2016
Number of Casks	28*	40	3 of 46	28	27 of 28	40	0 of 30	47 of 67	0 of 68	14	24	12 of 98
Total Casks on Site	71			95		47		38		12		
2022 ISFSI Loading Plan		3 casks		3		5		•		4 (complete)		


^{*} includes the TN-32B High Burnup Demonstration Cask loaded in 2017

- <u>Purpose</u>: obtain actual data on high burnup spent fuel in dry storage to prove it is safe and stable, and can be safely transported off-site to a repository
- Initiated in 2012 by Dominion
 - We have our own site ISFSI license, and experience with bolted lid casks, high burnup fuel (> 45 GWd/MTU) from both fuel vendors, and demonstration programs
- Funded by the Dept of Energy and Electric Power Research Institute
- Dominion partnered with EPRI, Orano Federal Services, Transnuclear, Framatome, and Westinghouse
 - Developed test plan and fuel loading (2013)
 - Procured a new bolted lid TN-32 cask (2014)
 - Modified cask lid to accept thermocouples (2015-16)
 - Dominion submitted license amendment application to NRC (2015)
 - NRC approved the amendment (August 2017)


- Cask loaded in November 2017 and placed at the ISFSI
- Temperature data from 63 thermocouples recorded hourly

- Fuel temperature data shows expected slow, steady decline
- Natural variations in ambient temperature also seen inside cask

Next Steps

- Cask vendor Orano obtains transportation license (application submitted in 2021)
- Prepare cask for loading onto conveyance and rail shipment ~2026
- Dept. of Energy assumes ownership for shipment, receives cask (likely at a national lab) and performs additional inspections on fuel after transport

